Theoret. chim. Acta (Berl.) 26, 55-65 (1972) © by Springer-Verlag 1972

Zur Konjugation in makrocyclischen Bindungssystemen [1] XX. Charakterordnung, magnetische Suszeptibilitäten und chemische Verschiebungen von Corannulenen*

Paramagnetischer Suszeptibilitätsanteil im Innern von Corannulenen

G. EGE und H. VOGLER

Organisch-Chemisches Institut der Universität Heidelberg

Eingegangen am 30. September 1971

Conjugation in Macrocyclic Bonding Systems XX. Order of Character, Magnetic Susceptibility and Chemical Shifts of Corannulenes

By means of calculations of the Polansky character order, ring current contributions to the magnetic susceptibilities and to the chemical shift in the Hückel approximation, it is shown, that corannulenes cannot be treated as macrocyclic annulenes.

Mit Hilfe von Berechnungen der Polansky-Charakterordnungen, der magnetischen Suszeptibilitäten und der chemischen Verschiebungen (¹H–NMR) im Rahmen der HMO-Theorie wird gezeigt, daß Corannulene nicht als makrocyclische Annulensysteme aufgefaßt werden können.

Des calculs des caractères annulènoides, des contributions du courant cyclique à la susceptibilité magnétique et aux déplacements chimiques dans la méthode de HMO montrent, que les corannulènes ne peuvent pas considérer comme des annulènes macrocycliques.

Einleitung

Corannulene sind Moleküle, die aus zwei Perimetern bestehen, die durch sog. Radialenbindungen verknüpft sind. Bisher sind nur wenige Corannulene bekannt: Pyren I, Coronen II und das eigentliche "Corannulen" [2]. Ein weiteres Corannulen konnte nur massenspektrometrisch nachgewiesen werden [3]. Über Versuche zur Synthese makrocyclischer Corannulene wurde berichtet [4, 5]. Bei diesen Verbindungen interessiert die Frage, ob derartige Kohlenwasserstoffe als makrocyclisch konjugierte Annulene aufgefaßt werden können. Diese Frage soll im Rahmen der HMO-Theorie beantwortet werden.

Wir beschränken uns auf alternierende Corannulene, die nur aus Benzoleinheiten aufgebaut sind, da bei ihnen die Anwendung der HMO-Theorie gerechtfertigt ist. Unsere Untersuchungen wurden auch auf die strukturell ähnlichen Polyacene ausgedehnt, um die Verläßlichkeit der Theorie zu prüfen.

Erste Hinweise darauf, daß die Kopplung zwischen beiden Perimetern sehr stark ist, ergaben frühere Berechnungen der Bindungsordnungen einiger Corannulene [6]. Ebenso ergaben die Berechnungen der Radialen-HMO-Bindungsordnungen von den Corannulenen I bis VII Werte zwischen 0,65 und 0,47, was

^{*} Teilweise vorgetragen auf dem VII. Symposium für Theoretische Chemie vom 29. 3. bis 2. 4. 1971 in Göttingen.

einem Bindungsabstand von 1,40–1,43 Å entspricht [7]. Früher [6] wurde schon festgestellt, daß bei derartigen makrocyclischen Bindungssystemen die mit der HMO-Methode berechneten Bindungslängen ungefähr mit denen nach der SCF-Methode übereinstimmen.

Wir untersuchten u. a.¹ folgende Corannulene:

In Klammern wird die Zentrenzahl (n_i, n_a) des inneren und äußeren Perimeters angegeben. Dabei gilt immer $n = n_i + n_a$ und $n_a = n_i + 12$. Alle Corannulene (außer IV und VI) haben zwei (4q + 2)-Perimeter. Wir nennen diese Corannulene einfach (4q + 2)-Corannulene im Gegensatz zu IV und VI, die entsprechend (4q)-Corannulene genannt werden.

Annulenoide Charakterordnungen von Polyacenen und Corannulenen

Polansky u. Derflinger [8] entwickelten eine Methode, die es erlaubt, den benzoiden, butadienoiden usw. Charakter der entsprechenden Teilstruktur einer konjugierten Verbindung zu berechnen. Sie definierten eine Maßzahl $r_{\rm L}$, die sog. Charakterordnung der Teilstruktur L, die in dem Gesamtmolekül enthalten ist

$$r_{\rm L} = \frac{1}{2n_{\rm L}} \sum_{\mu=1}^{n} \sum_{\nu=1}^{n} P_{\mu\nu}^{\rm L} P_{\mu\nu} \quad 0 \leq r_{\rm L} \leq 1.$$

 $P_{\mu\nu}$: π -Bindungsordnungen im Gesamtsystem, $P_{\mu\nu}^{L}$: π -Bindungsordnungen in der isolierten Teilstruktur L,

n: Gesamt- π -Zentrenzahl,

 $n_{\rm L}$: π -Zentrenzahl der Teilstruktur L, $n_{\rm L} \leq n$.

¹ Weitere untersuchte Corannulene s. [7].

Es bedeutet

 $r_{\rm L} =$

1 vollständige Beteiligung der bindenden MO's der isolierten Teilstruktur am Gesamtmolekül, 0 entsprechende vollständige Beteiligung der antibindenden MO's.

 $r_i \cdot 10^3$ $r_a \cdot 10^3$ Verbindung n na n_i Benzol Naphthalin Anthracen Tetracen Pentacen Hexacen Heptacen I Π Ш IV v VĨ VIIa VIIb

Tabelle 1. Annulenoide Charaktere einiger Polyacene und Corannulene

Fig. 1. Annulenoide Charaktere von linearen Polyacenen (----), (4q + 2)-Corannulenen (----) und (4q)-Corannulenen (·····)

G. Ege und H. Vogler:

Wir haben diese Methode zur Berechnung des annulenoiden Charakters $r_{a(i)}$ des äußeren (inneren) Perimeters verwendet. Je schwächer die Kopplung zwischen beiden Perimetern ist, desto näher sollte $r_{a(i)}$ bei 1 liegen. Tab. 1 und Fig. 1 geben die berechneten $r_{a(i)}$ -Werte wieder. In Fig. 1 wurde als Abszisse n_a gewählt, und zwar sowohl für r_a als auch für r_i da sich n_a und n_i nur um den konstanten Summanden 12 unterscheiden.

Bei Polyacenen entfällt n_i und r_i .

Diskussion der annulenoiden Charakterordnungen bei Polyacenen und Corannulenen

Bei diesen Substanzklassen ergibt sich das folgende Bild:

1. Der annulenoide Charakter der Corannulene ist kleiner als der von linearen Polyacenen gleicher Zentrenzahl.

2. Der annulenoide Charakter von (4q)-Corannulenen ist kleiner als der von (4q+2)-Corannulenen.

3. r_a nimmt mit wachsendem n_a ab, r_i nimmt jedoch zu. r_a ist stets größer als r_i , d. h. der äußere Perimeter ist weniger gestört als der innere Perimeter und somit das "bessere" Annulen.

4. Für Corannulene mit großer Zentrenzahl ändern sich die Werte für $r_{a(i)}$ kaum noch.

Suszeptibilitäten und chemische Verschiebungen bei Polyacenen und Corannulenen

Die magnetische Suszeptibilität und die chemische Verschiebung (¹H–NMR) ermöglicht, die Charakterordnungen mit meßbaren Werten zu korrelieren. Wir berechneten die von der Delokalisierung der π -Elektronen herrührende magnetische Suszeptibilität χ^{R} und die Störungsenergie 2. Ordnung E_{20} , die mit χ^{R} in folgender Weise verknüpft ist

$$\chi^{R} = -2E_{20}$$

sowie die chemischen Verschiebungen δ' von äußeren und inneren Protonen². Für diese Berechnungen wählten wir die Methode von Amos und Roberts [9–11] im Rahmen der HMO-Theorie. Diese Methode basiert auf dem Ansatz von London [12] und ist numerisch bequemer durchzuführen als die Methoden von Pople [13] und McWeeny [14]. Für E_{20} bzw. δ' ergeben sich aus der störungstheoretischen Behandlung des Problems die folgenden Gleichungen [9–11]

$$E_{20} = 2f_1 \sum_{i} \sum_{s,t} \left[c_{is}^0 c_{it}^0 F_{st}(20) + c_{is}^0 c_{it}(10) F_{st}(10) \right],$$
(1)

$$\delta' = -\frac{\beta}{3} f_2 \sum_{i} \sum_{s,t} \left[2c_{is}^0 c_{it}(10) F_{st}(01) + c_{is}^0 c_{it}^0 F_{st}(11) \right].$$
(2)

² $\delta' := 0$ für ein nicht cyclisch konjugiertes olefinisches Proton und $\delta' < 0$ für Verschiebungen nach tiefem Feld.

Darin bedeuten

 β HMO-Resonanzintegral, wir verwendeten den Wert $\beta = -4,15$ eV nach [11], c_{is}^0 Hückelkoeffizienten des *i*-ten MO's, F_{st}^0 Matrixelemente des Hückeloperators in β -Einheiten,

 $F_{st}(10) = i\alpha S_{st} F_{st}^0,$ $F_{st}^{(01)} = i\alpha S_{st} K_{st} F_{st}^{0},$ $F_{st}^{(20)} = -\alpha^2 S_{st}^{0} F_{st}^{0},$ $F_{st}^{(11)} = -\alpha^2 S_{st}^{0} K_{st} F_{st}^{0},$ $\alpha = \frac{e}{\hbar c}$, $S_{st} = \frac{1}{2} (x_s y_t - y_s x_t),$ $K_{st} = \frac{1}{R_s^3} + \frac{1}{R_t^3},$

 f_1 und f_2 sind Skalenfaktoren. Mißt man Koordinaten in Å-Einheiten, F_{st}^0 in β -Einheiten und bezieht man auf 1 Mol, so erhält man für f_1 und f_2 die folgenden Werte

$$f_1 = 2,22760$$
 $f_2 = 3,698491$.

 E_{20} hat dann die Dimension $[10^{-6} \text{ cm}^3 \text{ Mol}^{-1}]$ und δ' wird in Einheiten von 10^{-6} , d. h. ppm gemessen.

Die $c_{it}(10)$ erhält man durch Lösen des folgenden Gleichungssystems [9]

$$\sum_{t} (F_{st}^{0} - \varepsilon_{i}^{0} \,\delta_{st}) \,c_{it}(10) = -\sum_{t} F_{st}(10) \,c_{it}^{0} \,,$$

 ε_i^0 HMO-Eigenwert des i-ten MO's in β -Einheiten.

Da in den Summanden der Gl. (1) und (2) jeweils die ungestörten Hückelmatrixelemente auftreten, für die gilt $F_{st}^0 = 0$, falls die Zentren s und t nicht gebunden sind, läßt sich E_{20} (bzw. χ^{R}) in Beiträge einzelner Teilstrukturen aufteilen. Insbesondere gilt

$$E_{20} = E_{20}^{P_a} + E_{20}^{P_i} + E_{20}^{R_a}.$$

Dabei beziehen sich P_a bzw. P_i auf Beiträge des äußeren bzw. inneren Perimeters und R_a auf die Beiträge aller Radialenbindungen. Diese Aufteilung ist deshalb möglich, da es sich gezeigt hat [7], daß die Perimeterterme $E_{20}^{P_a(i)}$ von der Wahl des Koordinatenursprungs weitgehend unabhängig sind und für den Term $E_{20}^{R_a}$, der stark von dieser Wahl abhängig ist, gilt

$$E_{20}^{R_a} \ll E_{20}^{P_a(i)}$$

Wie man Gl. (1) entnimmt, ist die magnetische Suszeptibilität proportional dem Quadrat der umschlossenen Fläche. Um Verbindungen verschiedener Fläche vergleichen zu können, wurden die E20-Werte auf die gleiche Fläche bezogen, indem durch das Quadrat des Vielfachen der Benzolfläche dividiert wurde. Dabei wurde die Benzolfläche gleich 1 gesetzt. Wir nennen diese Werte $E_{20}^{P_a(i)}$ (red). Bei schwacher Kopplung erwarten wir eine Suszeptibilität der beiden Perimeter, die der der isolierten Annulene nahekommt. Bekanntlich zeigen (4q + 2)-Annulene starken Diamagnetismus, (4q)-Annulene jedoch Paramagnetismus [15–18]. Die

Verbindung ^a	n _a	χ ^{Rb}	$E_{20}^{P_a c}$	$E_{20}^{P_i c}$	$E^{R_a\ c}_{2\ 0}$	$E_{20}^{P_a}(\text{red})$	$E_{20}^{P_i}(\text{red})$
Benzol	6	- 52,815	- 6,363		0,0	-6,363	
Naphthalin	10	-115	- 13,9		0,0	- 3,48	
Anthracen	14	-182	- 21,5		-0,41	-2,39	
Tetracen	18	-250	- 29,2		-1,00	-1,83	
Pentacen	22	- 320	- 36,9		-1,66	-1,47	
Hexacen	26	- 390	- 44,7		-2,32	-1,24	
I	14	-242	- 29,9	+ 0,0	+0,8	-1,87	d
II	18	-517	- 64,9	+ 2,7	+0,0	-1,33	+2,69
III	22	-625	- 84,2	+ 9,8	-0,9	-0,84	+2,45
IV	24	-403	- 73,7	+27,1	-1,9	-0,51	+3,00
V	26	-735	110	+23,6	-2,3	-0,51	+1,48
VI	28	-530	-101	+ 40,5	-3,5	-0,39	+1,62
VIIa	30	- 807	-135	+42,1	-4,1	-0,42	+1,17
VIIb	30	-808	-138	+45,3	-4,6	-0,38	+0,92

Tabelle 2. Magnetische Suszeptibilitäten von Polyacenen und Corannulenen

^a Bei allen Bindungen wurde die Benzolbindungslänge von 1,397 Å zu Grunde gelegt. Die Berücksichtigung der experimentellen Bindungslänge ändert die Ergebnisse nur unwesentlich (s. [7]).

^b In Einheiten von 10^{-6} cm³ Mol⁻¹. Zur Berechnung von mittleren Suszeptibilitäten aus den χ^{R} -Werten vergleiche [7, 9]. Die Übereinstimmung mit bekannten experimentellen Werten ist gut.

^c In Einheiten von 10^{-6} cm³ Mol⁻¹ β'^{-1} . β' ist der Wert des Resonanzintegrals in eV.

^d Dieser Wert ist nicht definiert, da die Fläche des "inneren Perimeters" Null ist.

berechneten annulenoiden Charaktere (Tab. 1) deuten darauf hin, daß der Diamagnetismus bei den (4q + 2)-Corannulenen I, II, III, V, VIIa und VIIb vor allem im inneren Perimeter stark verkleinert ist im Vergleich zum freien Annulen. Bei den (4q)-Corannulenen IV und VI sollte gemäß der $r_{a(i)}$ -Werte der Paramagnetismus der (4q)-Perimeteranteile ebenfalls kleiner sein als in den jeweils ungestörten Perimetern. Die Verkleinerung des Paramagnetismus ist möglicherweise im äußeren Perimeter größer als im inneren (obwohl $r_a > r_i$ ist), da bei größerem (4q)-Perimeter die Abnahme des Paramagnetismus infolge Bindungsalternanz mehr ins Gewicht fällt als bei kleinerem (4q)-Perimeter [15]. Die berechneten Suszeptibilitäten zeigen Tab. 2 und Fig. 2.

Es ergibt sich ein qualitativ ähnlicher Verlauf der Abhängigkeit von $E_{20}^{P_{a(i)}}$ (red) bzw. $r_{a(i)}$ von n_{a} wie der Vergleich der Figs. 2 und 1 zeigt. Die Korrelation von $E_{20}^{P_{a(i)}}$ (red) und $r_{a(i)}$ zeigt die Fig. 3.

Bemerkenswert ist vor allem, daß sowohl bei (4q)- als auch bei (4q + 2)-Corannulenen der äußere Perimeter einen diamagnetischen Beitrag (negatives Vorzeichen von $E_{20}^{P_a}$), der innere jedoch einen paramagnetischen Beitrag (positives Vorzeichen von $E_{20}^{P_a}$) zur Gesamtsuszeptibilität liefert. Letzterer ist bei (4q)-Corannulenen besonders groß. Daraus folgt, daß die Kopplung zwischen beiden Perimetern stark ist, denn sonst müßte bei (4q + 2)-Corannulenen der auf den inneren Perimeter entfallende Anteil der Suszeptibilität diamagnetisch sein. Entsprechend müßte bei schwacher Kopplung bei (4q)-Corannulenen der auf den äußeren Perimeter entfallende Anteil der Suszeptibilität paramagnetisch sein (vgl. Fig. 4).

Fig. 2. Störungsenergien $E_{20}^{P_{c,i}}$ (red) von linearen Polyacenen (----), (4q + 2)-Corannulenen (----) und (4q)-Corannulenen (----)

Fig. 3. Korrelationen zwischen annulenoiden Charakteren und Störungsenergien $E_{20}^{P_0,i}(\text{red})$ für (4q + 2)-Corannulene (+) und (4q)-Corannulene (\bigcirc)

Fig. 4. Suszeptibilitätsbeiträge von (4q+2)- bzw. (4q)-Perimetern in Corannulenen ohne und mit Kopplung zwischen beiden Perimetern

Die Perimeterbeiträge zur Gesamtsuszeptibilität sind experimentell durch eine Suszeptibilitätsmessung nicht zugänglich. Jedoch erhalten wir indirekt Hinweise auf den diamagnetischen Beitrag des äußeren Perimeters durch die zu erwartende chemische Verschiebung der äußeren Protonen nach tiefem Feld und bei paramagnetischem Anteil der Suszeptibilität des inneren Perimeters durch eine chemische Verschiebung der inneren Protonen ebenfalls nach tiefem Feld. Wir berechneten deshalb die chemischen Verschiebungen nach Gl. (2). Da die berechneten Verschiebungen durchweg zu groß sind (δ'_{Benzol} experimentell -1,55 ppm nach [11, 19], berechnet -2,17 ppm), wird zum Vergleich mit gemessenen Größen das Verhältnis

$$\varrho = \frac{\delta'}{\delta'_{\text{Benzol}}}$$

gebildet. In der Tab. 3 sind die so berechneten chemischen Verschiebungen für einige Polyacene und die Verbindungen I bis VII wiedergegeben. Bekannte experimentelle Werte sind zum Vergleich mit aufgeführt. Die Übereinstimmung zwischen beiden ist gut, wenn man von angulären Protonen absieht, bei denen van der Waals'sche Wechselwirkung eine Rolle spielt [20].

Bildet man aus den chemischen Verschiebungen ϱ Mittelwerte ($\overline{\varrho}_a$ über alle Außenprotonen, anguläre Protonen ausgenommen, $\overline{\varrho}_i$ über alle Innenprotonen), so erhält man folgendes Bild (Fig. 5).

1. Die berechneten mittleren chemischen Verschiebungen nehmen bei linearen Polyacenen mit zunehmender Zentrenzahl langsam zu (d. h. sie gehen nach tiefem Feld) und nähern sich bald einem Maximalwert.

2. Bei (4q+2)-Corannulenen nimmt mit zunehmender Zentrenzahl $\overline{\varrho}_a$ ab, $\overline{\varrho}_i$ jedoch geringfügig zu. Dies ist in Übereinstimmung mit dem Verlauf der annulenoiden Charaktere und der Störungsenergien $E_{20}^{P_{a(i)}}$ (red).

Verbindung ^a	Proton	Berechnete Werte			Experimentelle Werte ^d		
_	_	$-\delta'^{b}$	Q	$-\delta^{b,c}$	$-\delta^{\prime b}$	Q	
Benzol	1°	2,17	1,00	7,34	1,55	1,00	
Naphthalin	1	2,55	1,17	7,60	1,74	1,12	
-	2	2,84	1,31	7,82	2,09	1,35	
Anthracen	1	3,01	1,39	7,94	2,19	1,41	
	2	2,60	1,20	7,65	1,67	1,08	
	9	3,70	1,71	8,44	2,59	1,67	
I	1	3,55	1,64	8,33	2,44	1,57	
	2	3,25	1,50	8,11	2,27	1,46	
	4	3,01	1,39	7,94	2,34	1,51	
II	1	4,42	2,04	8,95	3,12	2,01	
ш	1	4,00	1,85	8,66			
	2	3,89	1,79	8,56			
	3	4,09	1,89	8,72			
	14	4,91	2,26	9,29			
IV	1	2,60	1,19	7,63			
	2	2,70	1,24	7,71			
	3	3,45	1,59	8,25			
	16	10,8	4,98	13,5			
V	1	3,71	1,71	8,44			
	2	3,82	1,76	8,52			
	3	4,55	2,10	9,04			
	4	3,48	1,60	8,27			
	17	3,95	1,82	8,61			
VI	8	3.81	1.76	8,52			
	6/7	2,80	1,29	7,79			
	5	2.83	1.30	7,80			
	4	2.93	1.36	7,90			
	3	3,55	1.63	8.32			
	2	2.55	1.18	7.62			
	1	2,54	1,17	7,60			
	17	3.40	1.57	8,22			
	18	7.15	3.30	10.9			
	19	8.51	3,92	11.9			
	20	8.12	3,74	11.6			
VIIa	1	3,25	1,49	8,10			
	2	3,40	1,56	8,21			
	3	4,40	2.05	8,97			
	19	5.60	2,58	9,79			
VIIb	1	3.11	1,43	8,01			
	3	4,19	1,93	8,78			
	19	4,04	1,86	8,67			

Tabelle 3. Chemische Verschiebungen

^a Alle C-H-Bindungslängen wurden bei 1,08 Å fixiert.
 ^b In ppm.

^c Die Umrechnung der ϱ -Werte auf δ (TMS)-Werte erfolgt nach der Gleichung:

$$\delta = -1,55 \cdot (\varrho - 1) + \delta_{\text{Benzol}}$$

 δ Benzol beträgt bezüglich TMS -7,34 ppm in CDCl₃.

^d Die experimentellen Werte wurden für Benzol [19] und für Naphthalin, Anthracen, Pyren I und Coronen II [20] entnommen.

* Protonenbezeichnung:

Fig. 5. Berechnete mittlere chemische Verschiebung $\overline{\varrho}_a(+)$ bzw. $\overline{\varrho}_i(\bigcirc)$ für lineare Polyacene (-----), (4q+2)-Corannulene (-----) und (4q)-Corannulene (-----)

3. (4q)-Corannulene zeigen entgegengesetztes Verhalten wie (4q + 2)-Corannulene, indem bei diesen $\overline{\varrho}_a$ mit wachsender Zentrenzahl zunimmt, $\overline{\varrho}_i$ jedoch abnimmt.

4. Pyren verhält sich wie ein Polyacen entsprechend dem verschwindenden Suszeptibilitätsbeitrag des "inneren Perimeters". Dieser Beitrag ist von der Wahl des Koordinatenursprungs praktisch unabhängig.

5. Mit wachsender Zentrenzahl verschwinden die Unterschiede in der mittleren chemischen Verschiebung zwischen Polyacenen, (4q)- und (4q+2)-Corannulenen und zwischen $\overline{\varrho}_a$ und $\overline{\varrho}_i$.

Zusammenfassung

1. Die Anwendung der HMO-Theorie auf die Berechnung von Suszeptibilitäten und von chemischen Verschiebungen ergibt bei alternierenden Kohlenwasserstoffen (z. B. Polyacenen) gute Übereinstimmung mit gemessenen Werten [7,9], so daß die erhaltenen Ergebnisse für Corannulene verläßlich sein sollten.

2. Die Polansky-Charakterordnung erlaubt es, den annulenoiden Charakter anzugeben, der mit meßbaren Eigenschaften korrelliert werden kann.

3. Die berechneten Suszeptibilitäten und chemischen Verschiebungen lassen bei Corannulenen auf eine starke Kopplung zwischen äußerem und innerem Perimeter schließen.

Wir danken den Herren Prof. O. E. Polansky und Prof. G. Derflinger für hilfreiche Diskussionen, der Deutschen Forschungsgemeinschaft für die Unterstützung dieser Arbeit und dem Rechenzentrum der Universität Heidelberg für die Gewährung von Rechenzeit auf der IBM 360/44.

Literatur

- 1. XIX. Mitteil.: Staab, H.A., Graf, F., Nissen, A.: Chem. Ber. 104, 1159 (1971).
- 2. Barth, W. E., Lawton, R. G.: J. Amer. chem. Soc. 88, 380 (1966).
- 3. Hellwinkel, D., Reiff, G.: Angew. Chem. 82, 516 (1970); Angew. Chem. internat. Edit. 9, 527 (1970).

- 4. Staab, H.A., Binnig, F.: Tetrahedron letters (London) 1964, 319; vgl. auch: Staab, H.A., Vögtle, F.: Chem. Ber. 100, 293 (1967).
- Jenny, W., Peter, R.: Angew. Chem. 77, 1027 (1965); Angew. Chem. internat. Edit. 4, 979 (1965);
 vgl. auch: Peter, R., Jenny, W.: Helv. chim. Acta 49, 2123 (1966).
- 6. Ege, G., Fischer, H.: Tetrahedron (London) 23, 149 (1967).
- 7. Vogler, H.: Diplomarbeit, Universität Heidelberg (1970).
- 8. Polansky, O. E., Derflinger, G.: Int. J. quant. Chemistry 1, 379 (1967).
- 9. Amos, A. T., Roberts, H. G. Ff.: J. chem. Physics 50, 2375 (1969).
- 10. — Theoret. chim. Acta (Berl.) 13, 421 (1969).
- 11. Roberts, H. G. Ff.: Theoret. chim. Acta (Berl.) 15, 63 (1969); 22, 105 (1971).
- 12. London, F.: J. Physique Radium 8, 397 (1937).
- 13. Pople, J. A.: Molecular Physics 1, 175 (1958).
- 14. McWeeny, R.: Molecular Physics 1, 311 (1958).
- 15. Pople, J.A., Untch, K.G.: J. Amer. chem. Soc. 88, 4811 (1966).
- 16. Baer, F., Kuhn, H., Regel, W.: Z. Naturforsch. 22a, 103 (1967).
- 17. Haddon, R.C., Haddon, V.R., Jackman, L.M.: Nuclear magnetic resonance spectroscopy for Annulenes. Fortschr. chem. Forsch. 16, 103 (1971).
- 18. Chang, D. B., Drummond, J. E.: J. chem. Physics 52, 4533 (1970).
- 19. Spiesecke, H., Schneider, W.G.: J. chem. Physics 35, 731 (1961).
- Jonathan, N., Gordon, S., Dailey, B. P.: J. chem. Physics 36, 2443 (1962); Diskussion dieses Effekts bei W. Haigh, R. B. Mallion und E. A. G. Armour, Molecular Physics 18, 751 (1970).

Priv.-Doz. Dr. G. Ege Organisch-Chemisches Institut der Universität D-6900 Heidelberg Im Neuenheimer Feld 7 Deutschland